Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR (AUTONOMOUS)

B.Tech. I Year II Semester (R18) Supplementary Examinations October-2020 MATHEMATICS-II

(Common to all)

Time: 3 hours

1

Max. Marks: 60

PART-A
(Answer all the Questions $5 \times 2 = 10$ Marks)

a	Solve $\frac{dy}{dx} + y = x$.	2M
b	Solve $\frac{d^4x}{dt^4} + 4x = 0.$	2M
с	$F_{valuate} \int \int \int f_{v+v+z} f_{v+z} f_{v+z}$	2 1 6

Evaluate
$$\iint_{0} \iint_{0} e^{x+y+z} dx dy dz$$
. 2M

d Write Cauchy's Riemann equations in polar form. **2M** e State Cauchy's residue theorem. **2M**

PART-B

(Answer all Five Units $5 \ge 10 = 50$ Marks)

2 Solve
$$3x(1-x^2)y^2 \frac{dy}{dx} + (2x^2-1)y^3 = ax^3$$
. 10 M

OR

1

3 a Solve
$$p^2 + 2pycotx = y^2$$
.
b Solve $y = psinp + cosp$.
5M

4 a Solve
$$(D^2 + a^2)y = \tan ax$$
 by method of variation of parameters. 5M
b Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$. 5M

$$dx$$
 OR

5 Solve in series the equation
$$x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + xy = 0.$$
 10 M

6 Change the order of integration in
$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} dx dy \text{ and hence evaluate it.}$$
10 M

7 Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}.$$
 10 M

8 a Determine p such that the function
$$f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1}\left(\frac{px}{y}\right)$$
. 5M

b Find all the values of k, such that $f(x) = e^x (\cos ky + i \sin ky)$. **5**M

R18

R18

OR

		•	
9	a	Prove that the bilinear transformation maps circles into circles.	5M
	b	Show that a bilinear transformation preserves cross ratio of four points.	5M

UNIT-V

10	Evaluate $\iint_{C} \frac{z^3}{(z-1)^4(z-2)(z-3)} dz$ where C is the circle $ z = 2.5$ by residue theorem.	10 M
	OR	

11 Show that
$$\int_0^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta} = \frac{2\pi}{1-a^2}$$
, $0 < a < 1$. 10 M

END